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Relation Between Quasirigidity and L-Rigidity in 
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The relation between quasirigidity and L-rigidity in space-times of constant 
nonzero curvature and in space-times with small curvature (weak fields) is studied. 
The covariant expansion of bitensors about a point is considered. We obtain an 
increase in the order of magnitude, under L-rigidity conditions, of the rate of 
change with respect to a comoving orthonormai frame of the linear momentum, 
angular momentum, and reduced multipole moments of the energy-momentum 
tensor. Thus, L-rigidity leads to quasidgidity in such space-times. 

1. I N T R O D U C T I O N  

In a preceding paper (Barreda and Olivert, 1996), a definition of L- 
rigidity was proposed as a special class of  pseudorigid motions (Ehlers and 
Rudolph, 1977; KOhler and Schattner, 1979) and therefore it depended on 
the chosen curve L. In L-rigid motion, the expansion of  the vector field that 
described the pseudorigid motion vanished. Another kinematical condition 
required that the Lie derivative of  the normal l - form to the pseudorigid 
"body" world-tube, with respect to the vector field that described the pseu- 
dorigid motion, vanished. The third condition was a dynamical one: The 
family of  tensor fields along L obtained by parallely transporting the energy- 
momentum tensor from the world lines that constituted the pseudorigid motion 
to the "center of  motion" L had constant components with respect to a 
comoving orthonormal frame. 
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In that paper (Barreda and Olivert, 1996), we studied the conditions of 
L-rigidity by applying to them some techniques of the PPN formalism in 
general relativity. It was shown that the proposed idealization was approxi- 
mately satisfied by a wide range of real physical systems. The obtained results 
agreed with classical rigidity, in the sense that the baryon mass density was 
constant in first order and the stress tensor was constant in the comoving 
system. Moreover, the Newtonian potential was constant along the line L 
and the gravitational field was constant along the line L in the comoving 
system. By choosing L as the center-of-mass line in the Minkowski space- 
time, we obtained that L-rigidity and weak rigidity (Del Olmo and Olivert, 
1983, 1985, 1986, 1987) were equivalent when the angular velocity was both 
small and constant. In this direction, a new step is to study the relation 
between quasirigidity and L-rigidity. 

In the present work our aim is to study the conditions of L-rigidity in 
space-times of constant curvature and in space-times with small curvature 
by applying to them some techniques of the covariant expansion of bitensors 
about a point (DeWitt and Brehme, 1960). We will check the way in which 
they modify the rate of change with respect to a comoving orthonormal frame 
of the reduced multipole moments of the energy-momentum tensor. 

In Section 2 we give some remarks on our notation and general 
assumptions. 

In Section 3 we begin by recalling L-rigidity equations and their expres- 
sions in a bitensorial form. Subsequently, we study the evolution of the 
multipole moments of the energy-momentum tensor defined from the parallel 
propagator (Dixon, 1964). We show in Theorem 1 that the moments t ,  given 
in equation (14), have constant components with respect to a comoving 
orthonormal frame under L-rigidity conditions. Theorem 2 shows that the 
moments p ,  given in equation (13), also have constant components with 
respect to a comoving orthonormal frame under L-rigidity conditions. In this 
last theorem, we suppose that the vector field family/W [equation (18)] along 
L, obtained by parallely transporting the normal field to the pseudorigid 
"body" world-tube, from the world lines that constitute the pseudorigid motion 
to the "center of motion" L, has constant components with respect to a 
comoving orthonormal frame. We show that this supposition is not a restriction 
when we particularize to space-times of constant curvature and to space- 
times with small curvature. Thus, L-rigidity, under the last condition, leads 
to the result that the multipole moments of the energy-momentum tensor 
defined from the parallel propagator have constant components with respect 
to a comoving orthonormal frame. In this sense quasirigidity and L-rigidity 
are analogous concepts since quasirigidity imposes that the reduced multipole 
moments of the energy-momentum tensor have constant components with 
respect to a comoving orthonormal frame. 
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In Section 4 we study the relation between quasirigidity and L-rigidity 
for the following two cases: (1) space-times of constant curvature, (2) space- 
times with small curvature (weak fields). 

We begin with space-times of constant curvature. From the Riemann 
tensor expression we get the covariant expansion of bitensors that take part 
in the definition of the reduced multipole moments of the energy-momentum 
tensor. We obtain that these moments are expressed from the multipole 
moments defined from the_parallel propagator. On the other hand, we get 
that the vector field family/W along L satisfies rotating M-transport equations 
to O(s 2) and so the moments p have constant components, to this approxima- 
tion order, under L-rigidity conditions. 

Likewise the linear momentum and the angular momentum are expressed 
from the moments p" ,  and so the linear momentum and the angular momen- 
tum have constant components, under L-rigidity conditions, with respect to 
a comoving orthonormal frame to O(s 2) and O(s3), respectively. 

On the other hand, by considering the base line L as the center-of-mass 
line we obtain that L-rigidity leads to quasirigidity to O(s3). 

Then we study L-rigidity in weak fields. Using the same techniques as 
in the case of space-times of constant curvature, we also express the reduced 
multipole moments of the energy-momentum t__ensor from the moments t 
and p'". Moreover, the vector field family N ~ along L satisfies rotating 
M-transport equations to O(s), and thus the moments p have constant 
components, to O(s2), under L-rigidity conditions. 

In addition, we get that the linear momentum and the angular momentum 
are expressed from the moments p ,  and thus they have constant components 
with respect to a comoving orthonormal frame, under L-rigidity conditions, 
to O(S) and O(s2), respectively. As a consequence, we get that the mass is 
constant, under L-rigidity conditions, to O(s). 

Moreover, by considering the base line L as the center-of-mass line we 
obtain that L-rigidity leads to quasirigidity to O(s2). 

2. NOTATION 

The notation used in this paper is basically that of Barreda and Olivert 
(1996). Greek indices range from 1 to 4. 

We denote partial differentiation by (.),~ and covariant differentiation 
by (.),~ or Vs. Symmetrization and antisymmetrization of indices are denoted 
by ( . )  and [-], respectively, while indices enclosed between vertical lines 
are omitted from these operations. 

The Riemann curvature tensor is defined by 

X'~,[~.,] = -�89 
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We will use the theory of bitensors developed by Synge (1966) and 
DeWitt and Brehme (1960). For a bitensor function of the point pair (z, m) 
we distinguish between indices at z and indices at m. We will use K, h . . . .  
as indices at z and or, 13 . . . .  at m. 

We denote by or(z, m) the world function and by 

H,~• = ( _ ~ . x ) - t ,  K,~x = H~ cr.~ x 

the Jacobi propagators (Dixon, 1970). In this notation, a dot followed by an 
index denotes covariant differentiation with respect to one or another variable. 

Another important bitensor that we will use is the parallel propagator, 
denoted by ~x~(z, m). 

We want to give some covariant expansions of bitensors. The second 
covariant derivative of the world function with respect to the variables z and 
m and the Jacobi propagators have the following expansions: 

O'.kct : --ghc~ --lgk[~R[~/aSO'.~ 'O' .~ "1"- O ( S 3 )  

n ~  = ~ .  -~gxaRav~so'v~r ~ + O(s 3) 

K,~ = ~ - �89 a + O ( s  3) 

where s(z, m) is the biscalar of geodetic interval, which gives the magnitude 
o f  the invariant distance between z and m as measured along a geodesic 
joining them. 

We also recall that with each pair (L, n), where L is a timelike curve 
parametrized as z(s) and n is a timelike unit vector field along L, there is 
associated a collection of hypersurfaces ~(s) formed by geodesics through 
z(s) orthogonal to n(s). Since these hypersurfaces are disjoint, there is a well- 
defined differentiable function (Dixon, 1974) • on E = t-Js E(s) given by 

• = s  if m ~ ~(s) 

This function allows us to connect bitensors with ordinary tensor fields on 
At, where At is the space-time manifold. In order to simplify the notation, 
we consider 

Sm -~" x(m), Zm = Z(X(m)) 
Dixon (1974) defines, relative to the pair (L, n), the linear momentum 

p~, the angular momentum S ~x, and the reduced multipole moments of the 
energy-momentum tensor J~I'"K,A~VO as integrals on hypersurfaces E(s). In 
Dixon's notation 

1 
JKI'' 'Knkp.VO = tKI "''Kn[k[vlx]p] + _ _  p~..-~tx[v~]0]~, n --> 0 

n + l  

where the nested square brackets denote here antisymmetrization on h, 
and v, p independently. The time variation of the J "  remains unspecified. 
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Using these definitions, Schattner (1978a,b) proves, under a supposition 
of weak field, the existence and uniqueness of a pair (Lo, n) such that 

0 = SX~p~, pX = Mn x 

The curve Lo is called the center-of-mass line. 
In order to obtain simple models of bodies that remove the arbitrariness 

of the J evolution, Dixon (1970) and Ehlers and Rudolph (1977) define 
dynamical rigidity or quasirigidity: A motion is quasirigid if the moments 
J '"  have constant components with respect to a comoving orthonormal frame. 
In our notation 

RM 
D nJ"" = 0  

where 

RM 
D , , X  x = XX + Mx X ~, MX liXn~ _ nX~i~ + l~x 

is the derivative operator associated with rotating M-transport, and l'lx~ is a 
skew tensor along L that describes the angular velocity of the comoving 
frame relative to an M-transported frame. A comoving orthonormal frame 
is an orthonormal tetrad, having n ~ as one vector, that satisfies rotating 
M-transport. 

3. M U L T I P O L E  M O M E N T S  A N D  L-RIGIDITY 

The equations which define the L-rigidity, proposed by Barreda and 
Olivert (1996), are given by 

V.~o = 0 (1) 

R M  
( D nT)(sm, m) = 0 V m  E ~ (2) 

t~N~o,g = 0 (3) 

where 

to ~ = K'~KU + H~M~xcr .X (4) 

is the vector field that describes the pseudorigid motion, and 

TX~(s, m) = ~X~(z(s), %,(s - Sm))-gP'f3(Z(S), ~ m ( S  - Sm))TC~f~('~m(S (5) 
- S m ) )  

is the tensor field family along L obtained by parallely transporting the 
energy-momentum tensor from the integral curves '~m ( m  E ~ )  o f  oJ a to  t he  
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"center of motion" L. Moreover, N ~ is a vector field on the world-tube 
that coincides with the unit normal vector field on each hypersurface E(s). 

In Barreda and Olivert (1996) we obtained the L-rigidity equations in 
a bitensorial form, given by 

K'~,,.o,~ '~ + H'~,,.,~M"xtr. x + (K~K.x~x~ K + K~K~ K 

+ H'~,,.x2XMK~tr. ~ + H~/fff• x + H'~, ,MKxtr .x~)X, ,~  = 0 (6) 

2 ~ ( x ~ . ~ ) ~ T  ~ + 2tov~x~.V~)~T ~a 

+ -~x,~g~f~T'~:vo~v + 2g(X,xMO')pgPl3T~l~ = 0 (7) 

n ~ c r . ~ a { n P c r . ~ [ K ~  ~ + H ~ f ~ M ~ x c r . x  - lixcr.xl3 

+ (K~.x~x~ K + H~x~XM~o-~),X,~] 

- (nKM~xO'. x + nxtr.x~ ~ + a• = 0 (8) 

On the other hand, the linear and angular momenta were first given by 
Dixon (1964) from the bitensor ~ x  instead the bitensors H~x and K~x. In a 
subsequent paper Dixon (1970) indicated that these definitions were made 
without sufficient study of  their implications. Even so, we are interested in 
considering these moments with the purpose of  studying the analogy between 
quasirigidity and L-rigidity. These moments are defined by 

pX(s) = f ~X~T~ d ~  (9) 
J~ (s) 

SX~(s) = 2 ( o'.t~XI,T~a d'Z~ (10) 
J~ (s) 

and satisfy the equations 

[~x -- IRX (t pv~ + ~P'pPV) + O( s  2) (11) 
- -  ~-- -  vp, p,,- 

SX~  = 2ptXg,] + R[Xprr _ t~,],~ + ~p,~,,~,]t~ _ pt,]~t~ ) + O(s 3) (12) 

where 

p'r"~nX(s) = ( -1 ) "  f ~r'~ . . .  ~r."~x,,r 'g~ dell, n -> 1 (13) 
J~ (s) 

tKr"~-X~(s) = ( -1)n  / ~r ~t " "  ~r.~"~x~t'l~r'~l~co~ dE~, n -> 1 (14) 
(s) 

are the multipole moments of the energy momentum-tensor defined from the 
parallel propagator. Obviously, equation (13) for n = 0 coincides with the 
expression given in (9). 
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In this way, the moments p'" and t"' play the same role as the reduced 
multipole moments of the energy-momentum tensor J ,  given that they also 
have an arbitrary time variation. We will show that this arbitrariness is 
removed in the L-rigidity concept. 

We begin with the evolution of the moments t .  

T h e o r e m  1. The moments t"' have constant components with respect to 
a comoving orthonormal frame in L-rigid motion. 

P r o o f .  As the flow % of the vector field oJ '~ (Barreda and Olivert, 1996) 
is a diffeomorphism that drags E ( S o )  into E ( S o  + s) and it preserves the 
orientation, for Sufficiently small s and So arbitrary, equation (1) leads to 

tKr"K"X~(So + S) = (--1y f (trK~ .. .  tr.~,~x ~%T~) o q~s~o,'q (15) 
J~ (So) 

Taking the derivative of the last equation at s = 0, we get 

d s  So (so) " ' " 

+ n ( - 1 y  ~ oVtr(~tvtr. ~2 . . .  tr~-~x,~g~oT'~Oto," q 
J~ (So) 

+ 2( - -1 )  n / O'-KI "'" ff.KnzV-~a,v-gP~)f3T~f3t'~ 
J~ (So) 

+ 2 ( - 1 y  / cr.K~ "'" cr-'~t~ T~t ' 'q  
(So) 

+ ( -1 )"  ~ l  . . .  ~.~.~ ~ T - ~  L,,~ (16) 
(So) 

and so 

(So) 

+ n(--1)n I o~r162 ~2.-. o'~)~'~13T~[3~o; q 
(So) 

+ 2 ( - 1 y  [ ~KI .. .  ~ % ~ ) ~ T ~ , ~  
~x (So) 

+ 2 ( - 1 y [  ~r. ~ --. o ' . ~ o ' ~ ) ~ T ~ , . ~ q  
J~ (so) 
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f 
+ ( -1)"  | cr. ~l "'" cr.K"~x,~r (17) 

J~ (So) 

Equations (4), (7), and (17) prove that the moments t'" have constant compo- 
nents with respect to a comoving orthonormal frame. �9 

Finally, we study the evolution of the tensor fields p"" along L under 
L-rigidity conditions. We consider the vector field family along L 

NK(s, m) = gK~t(Z(S), ~m(S --  sm))Na(~tm(S - -  Srn)) (18) 

for m E ~. This family is defined analogously to the tensor field family ~xr 
[equation (5)], and it is obtained by parallely transporting the normal vector 
field N ~ from ~/m to L. 

RM 
Applying the derivative operator D n to the last family at the point (Sm, 

m), we get 

RM 
D , N  ~ = (~ .x~  x + ~K~.~co~ + MK• ~ + -g~N~;f~o~ f~ (19) 

where the bitensors are located at the point (z,,, m), the tensor fields along 
L at the point s,., and the tensor fields at the point m. 

RM 
T h e o r e m  2. In L-rigid motion satisfying D . N ~ ( s , , ,  m) = 0, for all m 

E, the moments p have constant components with respect to a comoving 
orthonormal frame. 

P r o o f  For sufficiently small s and So arbitrary, taking into account that 
the flow q~s of the vector field ~ is a diffeomorphism that drags E(So) into 
E(So + s) and it preserves the orientation, we obtain 

p~l' "'~X(S ~ + S) = (--1) n+t f (O'. KI "'" o-.KngXaTal3Ni3)~ qOsqOs*(t,g/]) 
(So) 

(20) 

Taking the derivative at s = 0, taking into account equations (1) and (3), we get 

dpKl'''Knh" = n ( - - 1 ) n + l  f]~ ZlXO'.(KI,ILo'.K2 " " " []r Kn)-gk~T~t~l,N~ 
ds So (So) " 

+ n ( -1 )  "+l ( co~cr.C~l,~cr. ~2 . . .  cr.K,)~XT'~fWf~ux I 
J~ (So) 

+ ( -1)  .+~ f o-.-I . . .  cr...-~x,~r 
(So) 
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f 
+ ( - 1 )  n+t ] 0". "1 . . .  ~r'<~x,~.,to~'tT~f~Nf~LN, q 

Jx (so) 

+ (--1) n+l ~ O" KI "'" cr ~"~x~co~(T~N~),~t~(q (21) 
JX (so) 

and thus 

p""",X(so) = n(-1)  "+' f ~cr("'~cr."2 .- .  cr.".)~X~T~N~t~ 
Jx (So) 

+ n(--1) "+l f co'~.<"kytr. "2"'" tr.~,)-~X,~T'~Nf~t~ffl 
J~ (So) 

+ ( - 1 )  n+l ~ o "K' . . .  cr.,,.-~,.~T~*N~u.q 
J~ (So) 

+ ( - 1 )  "§ f o'y' "-  cr.".~_~oJ~T~ 
Jx (So) 

+ ( - 1 )  "+l f or. ~' --.  cr.~,g~,~(T'~13N~);.~co~t~,q (22) 
Jx (So) 

Hence our theorem follows from equations (4), (7), (19), and (22). �9 

From these two theorems, supposing that the vector field family N" 
along L satisfies rotating M-transport equations, we obtain that L-rigidity 
leads to the result that the multipole moments of the energy-momentum 
tensor, defined from the parallel propagator, have constant components with 
respect to a comoving orthonormal frame. In this sense, quasirigidity and L- 
rigidity are analogous concepts, so that quasirigidity ~mposes that the reduced 
multipole moments of the energy-momentum tensor have constant compo- 
nents with respect to a comoving orthonormal frame. 

4. RELATION BETWEEN QUASIRIGIDITY AND L-RIGIDITY 

In this section we study the relation between quasirigidity and L-rigidity 
in space-times of constant curvature (nonzero) and in space-times with small 
curvature (weak fields). We give the expression for the reduced multipole 
moments of  the energy-momentum tensor in such space-times. We consider 
the covariant expansions of the second covariant derivatives of the world 
function and the Jacobi propagators. 
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4.1. L-Rigidity in Space-Times of  Constant Nonzero C u r v a t u r e  

A space-time of  constant curvature is characterized by a Riemann tensor 
with the components 

R~ .~  = k(g~vg~8 - g~sg~) (23) 

where k = RI12. 
In a space-time of  constant curvature it is immediate to prove that 

k 
O'.ka ~- --gk(~ - -  6 (gketO'.pO'. p --  O'.hgl.uxO'.P') + 0 ( S 3 )  (24) 

k p 
n~x = gx~ - g (~x~tr.po'. - (r.x~o=tr.~) + O(s 3) (25) 

k p 
K~x = gx~ - ~ (gx~o'.oo'. - (r.xg~tr.~) + O(S 3) (26) 

From these equations the bitensor O Kxr [equation (9.5), (Dixon, 1974)] 
n 

used to define the moments J is expressed as 

k n - 1  
OKX~ = g~(~g~)X 3 n + 1 (g~(~~ n 

- 2g~(~g~)~(r.po'.P + o'.Ko'.(~g ~)x) + O(s 3) (27) 

From equations (24)-(27) we get that the reduced multipole moments 
of  the energy-momentum tensor, in a space-time of  constant curvature, have 
the following components: 

= t "r''~"x~ + ~ (tK'"'"p "x" - tKr"'~ ~ + O ( s  3) (28) t~l-..,,,x~ 

2 k n -  1 pZl'"r.nkl~v = 2p~r....(Xg.)~ _ _  pKr-.~..(x.) 
3 n + l  

+ k 3n - 5 p~r.-~pp(Xg~)~ k n - 3 g~(Xp~)~,...~pp + O(s3 ) 
3 n+------i- 3 n ~ l  

(29) 

We also obtain that the linear and angular momenta have the following 
components: 

pX = pX _ kg~p~t~] + 0(83) (30) 

= _2pth~ l + k g~pp~ptx~] + 0(83) (31) S• 
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On the other hand, the vector field family along L, N K, has the expression 

NK(s, m) = nK(s) + O(s 3) (32) 

Hence, or more exactly from equation (19), we have 

RM 

D~A/K ~ O(S 2) (33) 

which indicates that, to the approximation order considered, the vector field 
family N~ along L has constant components with respect to a comoving 
orthonormal frame. 

Now we state the following theorem. 

Theorem 3. In space-times of  constant curvature the moments p"" for n 
>- 1 have constant components with respect to a comoving orthonormal frame 
under L-rigidity conditions to O(S3). For n = 0 we get the same result, but 
to O(S2). 

Proof. The result follows from Theorem 2 and equations (29) and 
(33). �9 

Because of  this theorem, or more exactly using the same technique used 
to prove Theorems 1 and 2, and taking into account equations (30) and (31), 
we get the following consequence. 

Corollary 4. In space-times of  constant curvature the linear and angular 
momenta have constant components with respect to a comoving orthonormal 
frame under L-rigidity conditions to O(s 2) and O($3), respectively. 

Considering the center-of-mass line Lo, leaving aside the unphysical 
case S 2 = -12M2/R, Ehlers and Rudolph (1977) obtained 

~ = n x (34) 

Hence we have the following result. 

Theorem 5. In space-times of  constant curvature L-rigidity leads to 
quasirigidity to O(s3). 

Proof. The proof is analogous to those of Theorems 1 and 2 by taking 
into account equations (28), (29), (33), and (34). �9 
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4.2. L-Rigidity in Weak Fields 

We suppose that the curvature and its variation over space-time are 
small enough in a neighborhood of the body. Under this hypothesis, by using 
the covariant expansion of  bitensors, it is proved that 

r = - g x .  + O(sz) (35) 

H~x = gx. + O(s 2) (36) 

K~x = gx~ + O(s 2) (37) 

From these equations the bitensor O Kxr [equation (9.5), (Dixon, 1974)] 
n 

used to define the moments J"" is expressed as 

OKx~ = g~(~g~)X + 0(S2) (38) 
n 

From equations (35)-(38) we deduce that the reduced multipole moments 
of  the energy-momentum tensor have the following components: 

t KI'''Knkp" = t ~:l'''Knkp' + 0 ( 8  2) (39) 

p,,V..K.x~.v = 2O~,--.~.(Xg~)~ + 0(82) (40) 

whereas the linear and angular momenta are 

pX = pX + 0(82) (41) 

S x~ = - 2 p  tx~'l + O(s z) (42) 

On the other hand, the vector field family along L, N • has the follow- 
ing components: 

NX = n x + O(S 2) (43) 

Then, from this equation or taking into account (19), we get 

RM 
D . N "  ~ O(S) (44) 

Hence we obtain the following result. 

Theorem 6. In space-times with small curvature the moments p"" for n 
> 1 have constant components with respect to a comoving orthonormal frame 
under L-rigidity conditions to O(sZ). For n = 0 we get the same result, but 
to O(s). 

Proof. The proof is obtained from Theorem 2 and equations (29) and 
(44). = 
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Because of this theorem and taking into account equations (41) and 
(42), we get the following consequence. 

Corollary 7. In space-times with small curvature the linear and angular 
momenta have constant components with respect to a comoving orthonormal 
frame under L-rigidity conditions to O(s) and O(s2), respectively. 

We now consider the center-of-mass line Lo. Then from Theorem 6 we get 

-- O(S) (45) 

that is, the mass is a constant of motion, under L-rigidity conditions, to this 
approximation order. 

Moreover, taking into account equation (2.17) (Ehlers and Rudolph, 
1977), we get 

i x = n  x + 0(82 ) (46) 

To conclude, we get the following theorem. 

Theorem 8. L-rigidity under weak fields conditions leads to quasirigidity 
to O(s2). 

Proof. The proof is analogous to those of Theorems 1 and 2 by taking 
into account equations (39), (40), (44), and (46). �9 

5. DISCUSSION 

In a previous paper (Barreda and Olivert, 1996) we introduced L-rigidity, 
which, like quasirigidity, is a specialization of pseudorigidity, and hence we 
are interested in relating these two concepts. 

As indicated in Section 3, L-rigidity is analogous to quasirigidity under 
a weak condition in the sense that both preserve a set of multipole moments 
of the energy-momentum tensor: quasirigidity the reduced multipole moments 
and L-rigidity the multipole moments defined from the parallel propagator. 

In space-times of constant curvature we obtain that L-rigidity leads to 
an increase of two orders of magnitude in the rate of change with respect to 
a comoving orthonormal frame of the linear momentum and an increase of 
three orders of magnitude in the rate of change with respect to a comoving 
orthonormal frame of the angular momentum. A more important consequence 
is that L-rigidity leads to quasirigidity to O(s3). 

In weak fields we also obtain an increase of one order of magnitude in 
the rate of change with respect to a comoving orthonormal frame of the linear 
momentum and an increase of two orders of magnitude in the rate of change 
with respect to a comoving orthonormal frame of the angular momentum. 
Moreover, L-rigidity leads to quasirigidity to 0(82). 
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These results are a consequence of the fact that the reduced multipole 
moments of the energy-momentum tensor and the linear and angular momenta 
are expressed in such space-times from the multipole moments of the energy- 
momentum tensor defined from parallel propagator which, under L-rigidity 
conditions, have constant components with respect to a comoving orthonormal 
frame to the approximation order considered. 

RM 
We have assumed that the rotating M-transport operator D n decreases 

the original approximation orders in one unit when acting over moments of 
O(S) or higher, while it preserves the original approximation orders when 
acting over moments of order 0 (linear momentum). 

The relation between quasirigidity and L-rigidity cannot be studied in 
the pole-dipole approximation (Dixon, 1964) since at this level of approxima- 
tion the reduced multipole moments of the energy-momentum tensor vanish. 
We consider covariant expansion of bitensors about a point, and we only 
neglect higher order terms in obtaining expansions with respect to the parame- 
ter S (geodetic interval) of the linear and angular momenta and of the reduced 
multipole moments of the energy-momentum tensor and its rate of change 
with respect to a comoving orthonormal frame. 

Equations of motion of an L-rigid body and degrees of freedom of L- 
rigid motion will be treated in a subsequent paper. 
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